یکی دیگر از دانشمندان بزرگ این قرن سیمون دنیپوآسون (1840_ 1781) فرانسوی و شاگرد لاپلاس میباشد که اکتشافات مهمی در ریاضیات کرد. وی تئوریهای مهم اولر، لاگرانژ و لاپلاس را در مورد جاذبة اسحاق نیوتنی که به تئوری پتانسیل مشهور است در مورد الکتریسیته بکار برد و از 1824 آنها را در مورد مغناطیس نیز تعمیم داد. در سال 1828 این تئوریها به وسیلة ریاضیدان انگلیسی جورج گرین اصلاح شد و این شخص واضع دستور مهمی بنام فرمول گرین است که تمام ریاضیدانان آنرا به خوبی میشناسند.
گاوس ریاضیدان شهیر آلمانی که عنوان «پرنس ریاضیدان» بحق شایستة اوست، این تئوریها را مورد مطالعه قرار داد و تئوری کامل مغناطیس را بوجود آورد. مقام گاوس از لحاظ علمی همتای اسحاق نیوتن و ارشمیدس است. از اکتشافات درخشان او اولین دورة هندسه دیفرانسیل میباشد که منظور از آن مطالعة منحنیات و سطوح در نقاط بسیار نزدیک با یک نقطة بخصوص میباشد. مطالعات او دربارة انحناء و ترسیم نقشهها و نمایش سطوح بر صفحات، اصلی و اساسی میباشد.
کوشی فرانسوی، این ریاضیدان پرشور که در سراسر نیمة اول قرن نوزدهم بر دیگر هموطنان برتری داشت با منطق دقیق خود تئوریهای زیادی از حساب انتگرال را توسعه داد و آنالیز را واجد دقتی کرد که هندسه از زمان اقلیدس به بعد افتخار آنرا داشت. وی از سال 1820 تا سال 1830 تئوری توابعی را که دارای یک متغیر موهومی هستند بنا نهاد. این تئوری که امروزه بزرگترین عنوان افتخار او محسوب میشود، دانشمندان بزرگی نظیر ریمان، وشتراس، هرمیت و پوانکاره را بخود مشغول داشت.
علاوه بر مکتب ریاضیات فرانسوی و آلمانی مکتب ریاضیات دیگری وجود داشت و آن مکتب ریاضیات انگلیسی بود که کمکم از تاریکی خارج میشد. از نوابغ بزرگ این کشور ویلیام روون هامیلتون ایرلندی را بایستی نام برد که از لحاظ پیشرسی عجیب بود. در 5 سالگی متون لاتینی و یونانی و عبری را میخواند و ایتالیائی و فرانسوی را در 8 سالگی و عربی و سانسکریت را در 10 سالگی آموخت و در 14سالگی برای سفیر ایران خطابة خوشامدی به زبان فارسی تهیه کرد. این استعداد بیمانند بزودی متوجه علوم گردید بطوری که در 17 سالگی هامیلتون تمام حساب انتگرال را بخوبی میدانست و خسوف و کسوف را بخوبی پیشبینی میکرد و در 22سالگی استاد نجوم گردید. کارهای او بخصوص مربوط به مبحث نور، دستگاههای اشعه و مبحث دینامیک است. وی ملاحظات گاوس را درفضای سه بعدی تعمیم داد و در سال 1843 اولین اکتشاف خود را درباره کوآترنیونها یعنی جبر فضائی که تعمیم جبر گاوس و کوشی میباشد به آکادمی سلطنتی ایرلند تقدیم کرد. تقریباً در همین فکر را نه تنها در مورد فضای سه بعدی بلکه به فضای n بعدی تعمیم داد.
دوپیش درآمد ناگوار در حدود سال 1830 تاریخ علم را تاریک ساخته است. آبل نروژی و گالوای فرانسوی، پس از یک زندگانی بسیار کوتاه و پرهیجان در حالی که نتیجه با ارزش کشفیات اساسیشان شناخته نشده بود با رنج و مرارت درگذشتند.
نیل هنریک آبل متولد اوت 1802 در سال 1824 ثابت نمود که صرفنظر از معادلات درجة اول تا درجة چهارم، هیچ دستور جبری که بتواند معادلة درجه پنجم را به نتیجه برساند وجود ندارد و برای اینکه کارهای خود را به دیگران بشناساند در سال 1825 به آلمان سفر کرد و چون در آنجا نشانی از زندگی بدست نیاورد به پاریس روی نهاد. آبل در این شهر در شاهکار بزرگ خود دست دیگری برد و مقالهای «دربارة خاصیت عمومی طبقة بسیار وسیعی از توابع غیر جبری» انتشار داد. وی در نتیجة مکاشفهای که تنها حاصل نبوغش بود توانست راه خود را کج کند و انتگرالهای بیضوی لژاندر را مورد مطالعه قرار دهد و کشف او آنقدر استادانه بود که با نهایت سادگی کاری را که استاد بزرگ مزبور در مدت چهار سال انجام داد تبدیل به هیچ کرد.
آبل این کشف ذیقیمت خود را به کوشی سپرد. اما افسوس! کوشی آنرا گم کرد و نروژی بیچاره در حالی که آخرین شاهی خود را مصرف کرده بود و آخرین امید خود را از دست داده بود ناچار شد به وطنش مراجعت کند، و هم در آنجا بود که آبل در نتیجه محرومیتها و گرفتاریهای فراوان به مرض سل مبتلا گشت و در ششم آوریل 1829م جان سپرد. دو روز پس از آن تاریخ کوشی نسخة خطی او را پیدا کرد و آکادمی علوم از ارزش آن آگاه شد و جایزة بزرگ خود را به آپل و ژاکوپی آلمانی تخصیص داد. ولی آبل آنچنان فراموش شده بود که نامی از او در میان نبود و کسی نمیدانست که دو سال پیش مرده است.
گالوا که زندگیش در تاریخ علم صفحهای اندوهبار گشوده است در 26 اکتبر 1811م در پاریس متولد شد. در 14 یا 15 سالگی بجای انجام تکالیف عادی دبیرستان اوقات خود را صرف مطالعه در هندسه لژاندر و آثار بزرگ لاگرانژ و اکتشافات آبل مینمود. وی پس از عدم موفقیت در امتحان ورودی مدرسة پلی تکتنیک و نیز رانده شدن از دانشسرای عالی و مخصوصاً به سبب آشنا نبودن با دانشمندان مشهور وارد مبارزات سیاسی شد، او عقیده داشت:
«من برای دانشمند شدن چیزی کم دارم و بنابراین قلب من آرزوئی دارد که مغز من قادر به انجام آن نیست.»
گالوا پس از چند ماه زندانی شدن آزاد شد. ولی درحالی که فقط چند روز بیش از بیست سال و هفت ماه داشت در یک دوئل بخاطر زنی هرجائی مجروح گردید. شاید در تمام تاریخ علم فصلی حزن انگیزتر از شب 29ماه مه 1832وجود نداشته باشد.
گالوا «تئوری گروهها» را که قبلاً بوسیله کوشی و لاگرانژ مطالعه شده بود در معادلات جبری به کار برد و گروه جانشینی هر معادله را مشخص کرد. این تئوری که امروزه تعمیم یافته و در عین حال سادهتر شده است برای حل مسائل گوناگون بکار میرود و وسیلة جستجوی بدست فیزیکدانان زمان ما داده است.